Energy Conserving Norms for the Solution of Hyperbolic Systems of Partial Differential Equations
نویسندگان
چکیده
The problem of finding an energy conserving norm for the solution of the hyperbolic system of partial differential equations du/dt = Adu/dx, subject to boundary conditions, is reduced to the problem of characterizing those matrices appearing in the boundary conditions which satisfy two specific matrix equations. Necessary and sufficient conditions on the coefficient matrix A and the matrices appearing in boundary conditions are derived for an energy conserving norm to exist. Thus, these conditions serve as tests on a given system which determine whether or not the solution will have its energy conserved in some norm. In addition, some examples of specific systems and boundary conditions are provided. I. Motivation. Consider the hyperbolic system of partial differential equations (1.1) ^= A^f0rr>OandOOandO • • • > X„. Suppose that p of these eigenvalues are positive and q are negative and that p + q = n (we, therefore, exclude the possibility of vanishing eigenvalues); then, we may perform the partitions
منابع مشابه
Numerical Methods for Fuzzy Linear Partial Differential Equations under new Definition for Derivative
In this paper difference methods to solve "fuzzy partial differential equations" (FPDE) such as fuzzy hyperbolic and fuzzy parabolic equations are considered. The existence of the solution and stability of the method are examined in detail. Finally examples are presented to show that the Hausdorff distance between the exact solution and approximate solution tends to zero.
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملComputational technique of linear partial differential equations by reduced differential transform method
This paper presents a class of theoretical and iterative method for linear partial differential equations. An algorithm and analytical solution with a initial condition is obtained using the reduced differential transform method. In this technique, the solution is calculated in the form of a series with easily computable components. There test modeling problems from mathematical mechanic, physi...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کامل